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Abstract: Gestational age estimation at time of birth is critical for determining the degree of 
prematurity of the infant and for administering appropriate postnatal treatment. We present a 
fully automated algorithm for estimating gestational age of premature infants through 
smartphone lens imaging of the anterior lens capsule vasculature (ALCV). Our algorithm uses 
a fully convolutional network and blind image quality analyzers to segment usable anterior 
capsule regions. Then, it extracts ALCV features using a residual neural network architecture 
and trains on these features using a support vector machine-based classifier. The classification 
algorithm is validated using leave-one-out cross-validation on videos captured from 124 
neonates. The algorithm is expected to be an influential tool for remote and point-of-care 
gestational age estimation of premature neonates in low-income countries. To this end, we have 
made the software open source. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Premature birth is a significant cause of mortality in neonates and occurs in over 10% of all 
births annually [1]. Complications associated with premature birth are the second-leading cause 
of death for children under 5 years, causing over 1 million deaths in 2015 [1]. Accurate 
gestational age estimation is crucial for optimal neonatal outcomes [2], and a segment of infant 
deaths could be prevented with accurate estimation of prematurity and corresponding suitable 
treatment [1]. 

Currently, the accepted standard for estimating gestational age is prenatal ultrasound of fetal 
biometry, based on the high correlation between fetal size and gestational age during pregnancy 
[3]. However, in low-income countries, accessibility to ultrasound is limited. In these areas, 
gestational age is assessed via menstrual history or, postnatally, by neuromuscular and 
biophysical scoring systems, such as the Ballard or Dubowitz scores [3–5]. However, menstrual 
history is inaccurate in low literacy settings, and the complexity and subjectivity of scoring 
yields high error rates in estimating the degree of prematurity [6]. Thus, for a significant subset 
of developing regions in the world, there is a need for gestational age estimation methods that 
do not require expensive medical devices or expert clinical intervention. 

Studies have demonstrated that the disappearance of vasculature in the anterior lens capsule 
is correlated with increasing gestational age by expert clinicians using the Dubowitz scoring 
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system as gold standard [7]. In addition, inspection of the anterior lens capsule can be conducted 
using an ophthalmoscope connected to a smart phone camera, which is portable and easy to 
use. Therefore, assessing neonatal anterior lens capsule vasculature (ALCV) has the potential 
to serve as an alternative low-cost, portable method to estimate gestational age. 

While there is a large body of work on image analysis of retinal images for diagnosis and 
prognosis of pediatric [8–10] and adult [11,12] ophthalmic diseases using fundus imaging, 
automated analysis of lens vasculature in premature infants has not been investigated. 
Furthermore, cellphone camera imaging of pediatric eyes yields low-quality images with a large 
diversity of imaging artifacts, complicating the development of reliable automated image 
segmentation and analysis techniques using traditional machine learning algorithms [13,14]. 

Fortunately, deep learning-based convolutional neural networks (CNNs) [15] have been 
demonstrated to be a robust tool in ophthalmic image analysis [11,16–23]. CNNs utilize 
hierarchal learning, in which relevant features are learned at different fields of view to optimize 
classification and segmentation decisions. Recent works have extended CNNs to successfully 
automate complex ophthalmic tasks such as identifying ellipsoid zone defects [21], cone 
localization [24], and retinal and fluid layer boundary segmentation [25,26]. Moreover, newer 
network principles, such as atrous (dilated) convolutions, batch normalization, and dropout, 
have helped decrease statistical variability and reduce parameter size while maintaining similar 
spatial fields of view. These developments have been demonstrated to reduce overfitting to 
small, homogenous training sets, which is often characteristic of medical data sets [27–29]. 

In this paper, we propose a fully automatic algorithm to segment anterior lens regions in 
smartphone images and classify neonatal gestational age using ALCV. This method captures 
videos of neonatal ALCV and uses a fully convolutional network (FCN) based on the 
DeepLabv3 + architecture [29] and blind image quality analyzers to extract the anterior lens 
region of the best frame. For classification, the method uses CNN and support vector machine 
(SVM) techniques to suggest a binary classification of gestational age. The performance of this 
algorithm was compared to ground truth, a manual method based on direct segmentation of the 
ALCV. Section 2 explains the segmentation and classification algorithm, Section 3 
demonstrates the accuracy of the segmentation and classification models compared to ground 
truth and manual classification, and Section 4 describes our conclusions and future directions. 

2. Methods

This section introduces our fully automatic method for classifying neonatal gestational age 
using ALCV images. The core steps are outlined in Fig. 1 and are described in detail in the 
following subsections. Finer implementation details of the algorithm are excluded from the text 
as they can be found in the open source software code. 

Fig. 1. Overview of algorithm for classification of pediatric eye videos by ALCV. 
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2.1 Data set 

We collected a novel anterior lens video data set prospectively in a multi-institute clinical trial 
(ClinicalTrials.gov Identifier: NCT02346214) from September 2016 to September 2017. 
Neonatal patients were recruited from Loma Linda University, the University of North Carolina 
in Chapel Hill, and the University of Iowa. In total, the data set included 124 neonates between 
the ages of 26 and 42 gestational weeks. From each neonate, one to five ALCV videos between 
10 and 80 seconds were acquired using a PanOptic ophthalmoscope with a Welch Allyn 
iExaminer attached to the lens of an iPhone 6 Plus as seen in Fig. 2(a). One video per subject 
was randomly chosen for analysis. Sample frames from a representative video of a neonate at 
32.9 gestational weeks, which are shown in Fig. 2, demonstrate the challenges in analyzing 
ALCV. While frame (b) has a clear lens region, frames (c) and (d) do not show the anterior 
capsule region, and the anterior capsule region in frame (e) is out of focus. The median 
gestational age was 38.6 (IQR = 5.3) gestational weeks. 

Fig. 2. Sample imaging apparatus and video frames of 32-week, 6-day gestational aged neonate. 
(a) The imaging device consisted of a PanOptic ophthalmoscope using a Welch Allyn iExaminer
attached to an iPhone 6 Plus. Sample raw video frames show (b) a frame, with a clear eye region, 
that was chosen by the automatic method, (c) frame with no eye, (d) frame with closed eye, and 
(e) frame with eye out of focus. 

2.2 Data preprocessing – automatic coarse lens localizer (CALL) 

To identify frames of interest, we developed an automatic localization method termed coarse 
anterior lens localizer (CALL). Each subject video was partitioned into individual frames, 
which were then preprocessed independently. The input frame was first smoothed using a 
Gaussian low-pass filter with a standard deviation of 3. A 9 × 9 pixel sliding kernel was then 
used to locally normalize the image by dividing by the standard deviation of pixel intensity in 
the kernel field-of-view [30]. Finally, the Canny detection algorithm [31] was applied to extract 
the edges in the image frame. Figure 3 displays example outputs of image normalization and 
edge detection for input frames. Anatomically, the anterior lens region is located behind the 
pupil, which occupies a small area of the overall eye region. To ensure high quality images of 
the anterior lens regions were extracted, three primary criteria were used: the lens region should 
occupy over half of the eye region, should be a circular convex hull, and should have large 
intensity variations at the boundary between the anterior lens and the surrounding iris region. 
The frame in Fig. 3(a) has an identifiable lens region and was processed to produce the 
corresponding normalized frame (Fig. 3(c)) and the edge profile (Fig. 3(e)). In both the 
normalized and edge images, the circular lens region is seen to occupy over half of the overall 
eye region. In contrast, the normalized (Fig. 3(d)) and edge (Fig. 3(f)) images corresponding to 
the frame without a lens region (Fig. 3(b)) do not show these characteristics of the lens region. 

To localize the circular regions of the frame, a circular Hough transform with a diameter 
greater than half of the width of the image was used. Circular edges corresponding to large 
global intensity variations were classified as edges of interest. The convex hull of the anterior 
lens was determined with MATLAB’s convhull function and was used in conjunction with the 
classified edges to extract the circular, convex region of the frame. Circular edges delineating 
a concave or flat region were ignored. If no region of the frame corresponded to both a circular 
and convex region, the frame was classified as not having the anterior lens region in its field of 
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view and was not used for further analysis. For the remaining frames, the convex hull of the 
anterior lens defined the region of interest (ROI) and was extracted for further analysis. 

Fig. 3. Preprocessing of sample input frames (a) with visible lens and (b) without visible lens. 
(c) Normalized image of frame (a) in which the lens-iris boundary (red arrow) and iris-skin
boundary (blue arrow) are visible. (d) Normalized image of frame (b) where anatomical eye
boundaries are not visible. (e, f) Edge profiles of frames (a) and (b), respectively. Convex, 
circular regions corresponding to lens in (e) are not visible in (f).

2.3 Data preprocessing – automatic frame selection 

If the lens region, which occupies a fraction of the frame, is out of focus from the CALL pre-
processing, generic best frame selection algorithms may not be used directly for our application 
despite a high global quality of the video frame. Thus, the best frame in the video was 
automatically selected for analysis based on the quality of the lens region localized using 
CALL. We empirically determined that the best measure for quantifying the quality of the 
anterior lens region can be attained by combining two popular image quality metrics, i.e. the 
anisotropy-based metric of Gabarda, et al. [32] and the natural scene statistic model of Mittal, 
et al. [33]. We evaluated the image quality in the anterior lens capsule region by first 
normalizing each score to the same range and then averaging these two normalized scores. Up 
to the 50 highest quality lens ROIs and their corresponding frames were selected for further 
analysis. In the sample frames of the video shown in Fig. 2, frame (b) was automatically 
selected for further processing as it has a well-defined lens region, while deficient frames (c), 
(d), and (e) are rejected. 

2.4 Automatic finer anterior lens localizer (FALL) 

While CALL is a completely blind approach to lens localization and allows for frame pruning, 
the resulting ROIs may not be well localized, resulting in including extraneous information 
(false positives) or in missing the lens region (false negatives). Examples of both cases are 
shown in Fig. 4 and Fig. 5, respectively. Thus, a finer segmentation of the anterior lens region 
is needed to reduce extraneous data that could confound ALCV based estimation in a small 
low-quality image data set. 

To better segment the anterior lens with the limitations of our data, we developed a finer 
anterior lens localizer (FALL) that utilizes the DeepLabv3 + CNN architecture [29]. The data 
set consisted of the video frames selected in 2.3, and the ground truth was generated by 
manually labelling the lens regions in these frames. The binary labels identified pixels that were 
the lens region (1) and the background (0). Due to the large dimensions of the original video 
frame, each frame and corresponding label mask were downsampled to dimensions of 216 × 
384 pixels. The training and testing protocols are detailed in 2.5. 

During inference, the frames in the test set were segmented to produce a pilot segmentation. 
During post processing, this pilot segmentation was refined based on the criteria that only one 
lens region exists in each frame, and that the lens is convex and solid. In the refining process, 
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holes, or pixels classified as 0 surrounded by pixels classified as 1, were filled to produce fully 
connected components (FCCs). FCCs with a low percent solidity or insignificant area were 
discarded. The largest circular region inscribed in the raw segmentation was found and used as 
the refined mask. 

Next, the refined mask was upsampled to the dimensions of the original input frame and 
multiplied with the frame to extract the lens region. The frame was then cropped around the 
lens region. These lens regions were again evaluated using the combination of blind image 
quality analyzers described in Section 2.3. The highest quality lens per subject was selected for 
analysis, resulting in 124 lens regions. Sampled images of the automatically extracted and 
selected anterior lens region can be seen in Fig. 6, in which an overall trend of decreasing 
ALCV with increasing gestational age is observed. 

Fig. 4. Example of CALL overestimating lens region (a) Sample frame extracted from video 
with (b) CALL bounding box (blue) and FALL bounding box (green). (c, d) Anterior capsule 
lens region segmented by CALL and FALL, respectively. 

Fig. 5. Example of CALL missing lens region (a) Sample frame extracted from video with (b) 
CALL bounding box (blue) and FALL bounding box (green) (c, d) Anterior capsule lens region 
segmented by CALL and FALL, respectively. 
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Fig. 6. Sample segmented anterior lens capsule image data. Gestational age is indicated under 
each sample image in weeks (“w”) and days (“d”). 

2.5 FALL segmentation protocol 

To enforce the independence between the training, validation, and testing sets, we used 25-fold 
cross validation, in which the 124 subjects were split into 25 folds, each consisting of 4 to 5 
subjects. Frames corresponding to subjects in 21 folds were used as the training set; those in 3 
folds were used as the hold-out validation set; and those in 1 fold were used as the test set. Each 
fold consisted of the downsampled frame and mask pairs corresponding to the subjects in the 
fold. Kernel weights in the CNN were randomly initialized using Xavier initialization [34] and 
kernel biases were initialized to 0. Learning was optimized using Adam optimization [35] to 
minimize the dice loss of the lens region, L , defined as 
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where pi is the prediction for pixel i ranging continuously from 0 to 1 and gi is the binary ground 
truth pixel value (0 or 1). M and N correspond to the pixel height and pixel width of the image, 
respectively. The loss will be minimized when pixel values in pi approach those of gi. 

Training, validation, and testing mini-batch sizes were 20, 32, and 32, respectively. The 
initial learning rate was 0.001 and decayed by a factor of 0.2 when the loss on the validation 
set plateaued. The network was trained for 25 epochs and inferred on the validation set at the 
end of each epoch. The network state that produced the lowest loss on the validation set was 
used for inference on the test set. Training time was calculated per experiment (1 experiment 
per testing fold) and testing time was calculated per subject in the testing fold (124 subjects). 
The segmentation was implemented in Python using the TensorFlow [36] (version 1.4.0) and 
Keras [37] (version 2.1.5) frameworks. 

2.6 Classification algorithm 

After extracting and pre-processing the lens region of the frame, we incorporated a deep CNN-
SVM-based classification system that used the extracted lens region for age-classification. We 
utilized the deep residual network model (Resnet-152) that was pre-trained on 1.28 million 
images with 1000 classes from the 2015 ImageNet Large Scale Visual Recognition Challenge 
[38]. In our experiments, end-to-end training of the model performed poorly due to the limited 
size of the data set (124 images). In addition, a transfer learning technique of fine-tuning 
parameters of the final fully connected layer also performed poorly. Given the limited amount 
of available data, we used the Resnet-152 residual CNN to extract representative features from 
images of the eye regions. The final softmax classification layer from the network was removed 
and the output of the residual network was used as a deep feature vector. The images were 
resized to 224 × 224 pixels centered around the center of the extracted ALCV eye region. The 
LIBSVM toolbox [39] was then used to classify the generated deep features using the leave-
one-out-cross-validation strategy. The trained SVM used a radial basis kernel function with a 
cost of 1 to reduce overfitting of data to the training set. The SVM functioned as a binary 
classifier of gestational age across a threshold. The classes were split as follows:  threshold 
and > threshold. The feature extraction and classification pipeline are shown in Fig. 7. 

Fig. 7. Feature Extraction and Classification Pipeline – (a) resized images of anterior lens region, 
(b) feature extraction (Resnet-152) [38], (c) kernel-based SVM training, (d) leave-one-out
validation.
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2.7 Classification evaluation protocol 

Six age-thresholds were chosen for SVM classification: 33, 34, 35, 36, 37, and 38 gestational 
weeks. Each training/testing experiment was run independently for each of these thresholds. 
Each of the 124 neonates were separated into two age-classes: less than or equal to the threshold 
and greater than the threshold. These results were compared with the output of the SVM. 

In the experiment, 124 eye images (1 per subject) were selected for training/testing. The 
SVM was trained on the deep features extracted from the resized version of these images using 
Resnet-152 and was tested using a leave-one-out (124-fold) cross-validation protocol. There 
was no overlap between the training and test sets. 

The sensitivity is defined as the fraction of subjects whose gestational age is less than or 
equal to the threshold that are correctly classified. The specificity is defined as the fraction of 
subjects whose gestational age is greater than the threshold that are correctly classified. Total 
accuracy (mean accuracy) is the fraction of total subjects that were correctly classified. 

Average classification time was calculated for post-processing classification only (i.e. time 
after the eye regions have been extracted). This time includes the computational overhead of 
both extracting features using the deep CNN and training the SVM. 

Fig. 8. Examples of light reflection artifacts in ALCV images. 

Fig. 9. Manual labelling of chosen eye frame (a) with eye region mask (b) and annotated vessels 
(c). 

2.8 Alternative direct manual ALCV quantification 

To further evaluate the effectiveness of our fully automatic method that embeds deep learning 
for feature selection, we devised alternative manual methods that directly quantify ALCV 
features. In this procedure, a user-friendly software was developed that utilizes the automatic 
procedure for extracting the “best” frame as discussed in Section 2.3. The software displayed 

(a) (b)
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the top 50 ranked frames in each video to the user. The user then selected which of these top 
50 frames had the highest quality of the eye region. If none of these frames were of sufficient 
quality, the user could sift through the video to select the best frame. Following the selection 
of the best frame, the user marked the anterior lens region using the lasso tool in Adobe 
Photoshop. Note that some of the anterior lens region images are marred by imaging artifacts 
such as light reflection, as seen in Fig. 8. These artifact regions were detected using a brightness 
threshold calculated based on pixel intensity distribution in the image and were excluded from 
analysis. The user then used a stylus to annotate the anterior lens vessels using the paintbrush 
tool on a Microsoft Surface Tablet. These annotations were used by our ALCV analysis 
software to quantify key morphological features such as number of branches, branch tortuosity, 
branch length/width, and vessel density. The branch tortuosity was calculated using the arc 
length-to-chord ratio (L/C), where L is the length of the vessel branch and C is the distance 
between the two ends of the branch. Figure 9 shows an example of the manual annotations of 
the lens region mask and vasculature within the region. 

We used these features to build two comparative approaches to our fully automated 
algorithm. In the first method, we used the vasculature density for all subjects, fitted a linear 
regression of gestational age versus vasculature density, and used this regression to predict the 
gestational age of the neonates. In the second method, we used an SVM classification model to 
execute two different experiments. In the first experiment, only the vessel density was used as 
a feature to estimate gestational age. In the second experiment, the number of branches, median 
branch width, median branch length, median branch tortuosity, and vessel density were all used 
as features to estimate gestational age. 

3. Results

3.1 ALCV region segmentation

We evaluated the segmentation pipeline after the refining protocol. As images were 
automatically discarded during the refining step, the number of evaluated images is smaller 
than the number of total segmented frames. However, to ensure that each subject was weighted 
evenly as well, the results were also evaluated on a per subject basis. Each subject’s score was 
the mean of the score of each of its refined frames. Table 1 details the segmentation 
performance in comparison to ground truth, where precision (P), recall (R), and dice score 
coefficient (DSC) [40] are defined as 

2
,     ,  and   .

2

TP TP TP
P R DSC

TP FP TP FN TP FP FN
  

   
  

In these equations TP, FN, and FP are true positive, false negative, and false positive, 
respectively. 

Table 1. Segmentation performance metrics (mean ± standard deviation, median) per 
frame and per subject. 

Metric 
Method 

Per Frame Per Subject 

Precision 0.96  0.05, 0.97 0.96  0.04, 0.97 

Recall 0.88  0.07, 0.90 0.87  0.07, 0.89 

DSC 0.92  0.05, 0.92 0.91  0.04, 0.92 

3.2 ALCV-based gestational age estimation 

To determine the significance of ALCV as a gestational age predictor, we first quantified the 
correlation between vascular density and gestational age using the manual segmented ALCV 
data discussed in Section 2.8. The vascular density for each subject was plotted against 
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gestational age and was fitted to a linear model, as seen in Fig. 10. A significant relationship 
between vascular density and gestational age was seen (p < 0.0001), with a correlation 
coefficient of 0.7199. To test the accuracy of the linear regression-based ALCV quantification 
method as a predictor of gestational age, we used leave-one-out cross validation on the 124 
neonates. That is, when testing subject i, the information corresponding to subject i is removed 
from the training set to build the linear regression model, which is then used to predict the 
gestational age of subject i. The second manual model used the kernel-based SVM to classify 
neonatal gestational age in two experiments using different features (vasculature density alone 
versus all morphological features including vasculature density) as described in Section 2.6. 
The precision, recall, DSC, and weighted accuracy were measured for the three methods. Table 
2 highlights the cross-validation results for the three different manual methods, of which the 
linear regression-based estimation method had the highest weighted accuracy. 

For assessing the ability of our fully automatic CNN/SVM classification algorithm to 
generalize to an independent data set, we again used leave-one-out-cross-validation to utilize 
all data sets and avoid overfitting our results. The SVM for each subject is trained on the 
features extracted from the remaining subset of 123 extracted eye images. Table 3 details the 
cross-validation results compared to the best performing manual method (linear regression). 

Fig. 10. Scatter plot and linear fit of ALCV density vs gestational age (m = 0.4214, r = 
0.7199). 

Table 2. Fraction of subjects correctly classified using manual algorithms (bold indicates 
highest performing metric among algorithms). 

Threshold 33 34 35 
Method a LV SV SM  LV SV SM  LV SV SM 

Precision 0.80 0.71 0 0.87 0.68 0.50 0.79 0.61 0.50 
Recall 0.42 0.53 0 0.48 0.48 0.07 0.42 0.56 0.11 
DSC 0.55 0.61 nan 0.62 0.57 0.13 0.55 0.58 0.18 

Accuracy 0.90 0.90 0.83 0.87 0.84 0.78 0.80 0.77 0.71 

Threshold 36 37 38 
Method a LV SV SM  LV SV SM  LV SV SM 

Precision 0.83 0.69 0.50 0.81 0.71 0.66 0.73 0.70 0.69 
Recall 0.49 0.62 0.10 0.64 0.62 0.85 0.80 0.67 0.85 
DSC 0.61 0.65 0.17 0.71 0.66 0.74 0.77 0.69 0.76 

Accuracy 0.81 0.79 0.69 0.81 0.76 0.77 0.78 0.73 0.77 
a LV = linear regression-based method utilizing only vascular density feature, SV = SVM 
utilizing only vascular density feature, SM = SVM utilizing all morphological features. 
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Table 3. Fraction of subjects correctly classified during cross-validation – Automatic vs 
Manual (bold indicates highest performing metric among algorithms). 

Threshold 33 34 35 36 37 38 

Method a A LV  A LV  A LV  A LV  A LV  A LV 

Precision 0.70 0.80  0.76 0.87 0.81 0.79 0.82 0.83 0.85 0.81 0.83 0.73 

Recall 0.37 0.42 0.70 0.48 0.69 0.42 0.69 0.49 0.62 0.64  0.64 0.80 

DSC 0.48 0.55 0.73 0.62 0.75 0.55 0.75 0.61 0.72 0.71 0.72 0.77 

Accuracy 0.88 0.90 0.89 0.87 0.86 0.80 0.85 0.81 0.81 0.81 0.78 0.78 

3.3 Implementation and computational performance 

The fully automated algorithm was implemented across two environments, in MATLAB (The 
MathWorks, Natick, MA) and in Python. Using a workstation with two Intel Xeon CPUs and 
four NVIDIA Titan V GPUs, the average testing time per video was 602.2 ± 233.6s. The 
average testing time per frame was 1.8 ± 0.3s. The GPU units were only used during the 
segmentation of the FALL stage. Table 4 details the computation time and environment details 
per stage in the algorithm. Both FALL segmentation and SVM classification training would be 
a one-time process and in practice would not factor into the overall runtime of the automatic 
algorithm. 

The automatic software introduced in this study is available at 
http://people.duke.edu/~sf59/Desai_BOE_2018.htm and on GitHub at 
https://github.com/ad12/ALCV-pipeline. Along with the open source code, we have included 
the segmented images of the anterior capsule region for the 124 neonates in this study. 

Table 4. Computation details for different stages in automatic pipeline. Training times 
are absent for stages that did not require training. 

Stage Environment 
GPU 
used 

Runtime (mean ± std. dev., median) (seconds) 

Training 
Testing, per 

video 
Testing, per 

frame 

CALL MATLAB No —————— 
562.3 ± 233.4, 

505.2 
0.632 ± 0.300, 

0.564 

FALL, 
Segmentation 

PYTHON Yes 
4211.2 ± 58.6, 

4213.7 
0.463 ± 0.266, 

0.388 
0.011 ± 0.006, 

0.008 

FALL, Refining MATLAB No —————— 
5.47 ± 2.82, 

5.40 
0.142 ± 0.063, 

0.121 

Top Frame 
Extraction 

MATLAB No —————— 
33.7 ± 10.1, 

39.0 
0.693 ± 0.021, 

0.688 

Feature Extraction 
+ Classification 

MATLAB No 
0.606 ± 0.023, 

0.602 
0.294 ± 0.014, 

0.292 
0.294 ± 0.014, 

0.292 

4. Discussion

This paper presented a fully automatic method for segmenting ALCV lens regions and 
estimating gestational age using smartphone imaging of the anterior lens capsule. It also 
presented three manual methods for gestational age estimation using ALCV density and 
morphology quantification. The combination of the CALL and FALL protocols automated the 
process for high quality frame selection and fine segmentation of the anterior lens. By reducing 
low-quality, extraneous information, the output of the segmentation passed relevant data to the 
classification stage. In addition, unlike the time-consuming manual methods, the fully 
automatic classification method did not rely on segmentation of ALCV, but rather used deep 
feature descriptors and SVM classifiers to estimate gestational age. This was particularly 
important in the case of low-quality images, where automatic vascular segmentation is difficult 
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due to low contrast between vasculature and the background. The high accuracy in 2-bin 
classification of gestational age showed that our algorithm is robust to the low-quality 
smartphone images of the anterior lens capsule region. 

In the linear regression-based method, the significance of the correlation coefficient 
suggests that there exists a strong relationship between ALCV density and gestational age. 
However, manual segmentation also revealed problems with annotating vasculature in low 
quality, occlusion, and artifact-prone images. In addition, due to the low-quality images and the 
inherent differences in gestational development of different subjects, not all captured images 
of the anterior capsule region follow the trend of high ALCV at a low gestational age and low 
ALCV at increasing gestational ages. In Fig. 11, the image captured for the neonate of 39 
gestational weeks appears to have more vasculature than that of the 26-gestational-week 
neonate. As a result, while ALCV density does have a significant correlation with gestational 
age, even the manual ALCV estimation method could not perfectly predict gestational age. In 
low-income settings, the low image quality would limit the extent to which medical 
professionals can be accurate in manually estimating gestational age using smartphone imaging 
of ALCV. Differences in patient motion, lighting conditions, and scan times during acquisition 
can generate frames with different vessel-to-background contrast, which can impact clinician’s 
perception-based decisions for estimating prematurity. Moreover, the lack of availability of 
expert clinicians in low-income settings and the requirement of on-site training impedes the 
ability to scale a diagnostic pipeline for estimating prematurity. In contrast, an automated 
pipeline that looks at deep image features would provide a scalable, centralized process for 
estimating gestational age. Parallel to our clinical trial, a recent deep learning-based method 
has utilized images of newborns’ faces, feet, and ears to determine gestational age [41]. We 
expect that image features from the face, feet, and ears will be complementary to the deep 
ALCV features extracted in this algorithm and other potential imaging biomarkers. The 
potential orthogonality of the additional features can yield a more robust age estimation 
algorithm. 

The Resnet-152 CNN extracts patch-based features [38] that provide information about the 
anterior lens structure and vasculature beyond that which a simplistic ALCV density metric 
provides. Thus, despite fully automated execution, our fully automated gestational estimation 
results were overall on par with the time-consuming manual methods’ results. Indeed, as 
Resnet-152 was pre-trained on the ImageNet data set, the features optimized for natural images 
in the ImageNet data set likely did not correspond to the features of the anterior capsule region. 
Access to larger data sets are expected to improve the performance of this algorithm. 

Fig. 11. Sample best images extracted from neonates at 26 (a), 30 (b), and 39 (c) gestational 
weeks. Though (a) is expected to have highest vascularity in the anterior lens capsule, by 
inspection, the number of vessels seems larger in (b) than seen in (a). 

This fully automated method is potentially valuable for both remote and point-of-care 
gestational age classification. The computational efficiency of both feature extraction and 
classification makes this tool viable for rapid stand-alone processing in portable devices, such 

(a) (b) (c)

Vol. 9, No. 12 | 1 Dec 2018 | BIOMEDICAL OPTICS EXPRESS 6049 



as smartphones. Image analysis time can be significantly reduced if shorter videos are captured 
(or only a small time portion of the captured video is passed to the algorithm). Open-source 
frameworks, such as OpenCV [42] and TensorFlow Mobile [43], have been demonstrated to be 
effective in optimizing image processing and machine learning inference tasks on mobile 
devices [43] and can be used to deploy the fully automated algorithm locally on the smartphone. 
However, as most smartphones do not have the computational power of workstations, the 
computational time may increase. To eliminate local processing, cloud-based computing 
platforms can be used to securely transmit video data and parallelize video preprocessing and 
analysis across multiple workstations. 

We expect the core machine vision algorithms developed in this work to be generalizable 
to the task of analyzing images of neonates from different regions of the world. However, it is 
possible that minor modifications may be needed to adapt these algorithms for different 
populations. As part of our future work, we will conduct a large-scale clinical trial to collect 
videos from neonates in low-income countries and test the generalizability of our method to 
these subjects. If needed, we will also fine-tune our algorithm with data representative of 
populations with different geographical, racial, and socioeconomic backgrounds (e.g. by 
utilizing region specific training sets for SVMs). In another study, we will examine the effect 
of utilizing different cameras for imaging ALCV. Once again, while the core algorithms are 
expected to be the same, fine-tuning the machine-learned models on images captured by a 
specific camera may be required for optimal performance. Despite the encouraging results of 
our paper, there is a long road ahead in developing a robust method for newborn gestational 
age assessment through new combinations of existing and new non-invasive biomarkers or 
technology. As part of our image processing work, we are developing an image fusion 
technique to enhance the quality of the anterior lens region, which will improve the current 
CNN-based feature extraction method. We are also building a new multi-channel residual-
network model that can be trained end-to-end with a small data set and that would reduce 
overfitting, to which deep-layered CNNs are prone. High image quality, utilization of multiple 
imaging biomarkers, and reducing overfitting during training are critical to developing robust 
CNN-based classification models. Finally, we will also assess the feasibility of emulating the 
techniques commonly used in eye trackers or pupillometers to eliminate the need for the time-
consuming CALL stage. 
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